There is little doubt that the Human Immunodeficiency Virus, or HIV, is devastating. More than 1.2 million people in the United States are living with HIV and more than 47,000 people are diagnosed annually. Now, University of ÃÛÌÇÖ±²¥researchers have made a discovery in how specialized proteins can inhibit the virus, opening the door for progress in the fight against HIV and for the production of advanced therapeutics to combat the disease.
Human cells express Interferon Induced Transmembranes (IFITM) proteins that possess antiviral characteristics. These proteins have been shown to inhibit a number of viruses including influenza A, West Nile, Dengue fever and Ebola. In his study, Shan-Lu Liu, an associate professor in the in the and an investigator in the at MU, targeted IFITM proteins and their antiviral function.
“We have long understood that IFITM proteins have antiviral functions, but until now we did not know exactly how the proteins specifically inhibited the transmission of HIV” Liu said. “We’ve known that HIV-1, the most common HIV strain, can be transmitted from cell to cell or through a cell-free transmission in which the virus floats freely. Our research discovered that IFITM proteins can help inhibit the viral cell-to-cell infection, which is the most efficient way that HIV spreads.”
Reviewed 2015-09-29